

LA-UR-14-25081

Approved for public release; distribution is unlimited.

Title: Supernova Neutral Current Signal in 40Ar

Author(s): Hayes-Sterbenz, Anna C.

Ibeling, Duligur Friar, James Lewis

Intended for: CAPTAIN Collaboration Meeting, 2014-07-08/2014-07-09 (Santa Fe, New

Mexico, United States)

Issued: 2014-07-09

Supernova Neutral Current Signal in ⁴⁰Ar

Anna Hayes, Jim Friar, Duligur Ibeling, Patrick Jaffke, Gerry Garvey, and George Fuller Funding through LDRD (C. Mauger)

CAPTAIN MEETING, Santa Fe, July 2014

Abstract

We present calculations for the expected supernovae neutrino signals in a liquid argon neutrino detector. We compare these to the signals expected on carbon. In general, to extract the SN physics more than one signals is needed.

At Supernova Neutrino Energies E_v~0-50 MeV GT Transitions Dominate

$$\sigma_{v} = \frac{G_{F}^{2}g_{A}^{2}}{\pi} \left\langle f \middle\| \overrightarrow{\Sigma}(q) \middle\| i \right\rangle^{2}, \overrightarrow{\Sigma} = \overrightarrow{\sigma}\overrightarrow{\tau}$$

$$\xrightarrow{q=0} \frac{G_{F}^{2}g_{A}^{2}}{\pi} B(GT)$$

B(GT) can be approximated by the B(M1) gamma-ray strength, if the γ -transition is almost pure spin-flip

$$B(GT) = \frac{1}{2} \left(\sigma \tau \right)^{2}$$

$$B(M1) = \frac{3}{4\pi} \left\{ g_{l}^{IS} \left\langle \ell \right\rangle + \frac{g_{s}^{is}}{2} \left\langle \sigma \right\rangle + \frac{g_{s}^{IV}}{2} \left\langle \ell \tau \right\rangle + \frac{g_{s}^{IV}}{2} \left\langle \sigma \tau \right\rangle \right\}^{2} \mu_{n}^{2}$$

Almost Pure Spin-flip M1 State in ⁴⁰Ar at 9.757 MeV

1. Q-dependence of the form factors lowers cross section

2. Weak magnetism gives a ~20% difference between $v \& \overline{v}$

Four operators determine the neutral cross section to the 9.757 MeV 1⁺ in ⁴⁰Ar

$$T_{J=1M}^{mag} = \frac{q}{M_n} \Big[F_1^V \Delta_{J=1}(q) - \frac{1}{2} \mu^V \Sigma_{J=1}^{'}(q) \Big] \qquad \left\langle d_{3/2} \| \Delta \| d_{5/2} \right\rangle = \frac{1}{\sqrt{4\pi}} \sqrt{10} \frac{1}{5} \left(1 - \frac{2}{5} y \right) \exp(-y)$$

$$M_{J=1}^5 = \frac{q}{M_n} \Big[F_A \Omega_{J=1}(q) - \frac{1}{2} (F_A - \omega F_p) \Sigma_{J=1}^{"}(q) \Big] \qquad \left\langle d_{3/2} \| \Sigma' \| d_{5/2} \right\rangle = \frac{1}{\sqrt{4\pi}} \sqrt{10} \frac{4}{5} \left(1 - \frac{11}{10} y + \frac{1}{5} y \right) \exp(-y)$$

$$C_{J=1}^5 = \left[F_A - \frac{1}{2} \left(\frac{q}{M_N} \right)^2 M_N F_p \right] \Sigma_{J=1}^{"}(q) \qquad \left\langle d_{3/2} \| \Sigma'' \| d_{5/2} \right\rangle = \frac{1}{\sqrt{4\pi}} \sqrt{5} \frac{4}{5} \left(1 - \frac{9}{5} y + \frac{2}{5} y^2 \right) \exp(-y)$$

$$C_{J=1}^{el5} = F_A \Sigma_{J=1}^{'}(q) \qquad \left\langle d_{3/2} \| \Omega' \| d_{5/2} \right\rangle = \frac{1}{\sqrt{4\pi}} \sqrt{5} \left(1 - \frac{2}{5} y \right) \exp(-y)$$

$$C_{J=1}^{el5} = F_A \Sigma_{J=1}^{'}(q) \qquad \left\langle d_{3/2} \| \Omega' \| d_{5/2} \right\rangle = \frac{1}{\sqrt{4\pi}} \sqrt{5} \left(1 - \frac{2}{5} y \right) \exp(-y)$$

$$C_{J=1}^{el5} = F_A \Sigma_{J=1}^{'}(q) \qquad \left\langle d_{3/2} \| \Omega' \| d_{5/2} \right\rangle = \frac{1}{\sqrt{4\pi}} \sqrt{5} \left(1 - \frac{2}{5} y \right) \exp(-y)$$

$$C_{J=1}^{el5} = F_A \Sigma_{J=1}^{'}(q) \qquad \left\langle d_{3/2} \| \Omega' \| d_{5/2} \right\rangle = \frac{1}{\sqrt{4\pi}} \sqrt{5} \left(1 - \frac{2}{5} y \right) \exp(-y)$$

=> At Ev~ 25 MeV cross section drops below the simple
$$\frac{G_F^2 g_A^2}{\pi} B(GT)$$

2. Weak magnetism gives a ~20% difference between $v \& \overline{v}$

Interference term has opposite sign fo neutrino versus antineutrino

$$\sim \pm T_V^{mag}(q)T_A^{el}(q)$$

=> Neutrino and anti-neutrino cross sections deviate at Ev ~ 25 MeV

Predicted Cross Sections

Neutral current cross section 9.757 MeV 1⁺ in ⁴⁰Ar

Fermi-Dirac Neutrino Flux - No Oscillations

Total Cross section (all 6 neutrinos flavors)

40
Ar $1.1x10^{-42}$ cm² < Ev> =44 MeV
 12 C $16.0x10^{-42}$ cm² < Ev> =48.8 MeV

SN Neutrino Temperature Uncertain

ν_a 3-15% - also measured via CC

	σ ⁴⁰ Ar X10 ⁻⁴² cm ²		<ev> MeV</ev>		σ ¹² C	σ ¹² C X10 ⁻⁴² cm ²		<ev> MeV</ev>	
	T>	T<	T>	T<	T>	T<	T>	T<	
${ m v_e}$.07	.01	30	22	.6	0 .05	35	26.	
$ m u_{e ext{-bar}}$.18	.1	41	34	2.4	1.0	46	38	
$ u_{\mu, au ext{-bar}}$.37	.34	53	49	5.8	4.1	57	52	
$ u_{\mu, au}$.45	.3	52	48	7.3	5.0	58.	53	

Additional Neutral Current Signal in 40Ar at 4.473 MeV

9.757 MeV state almost pure $d5/2 \rightarrow d3/2$

=>(v,v) cross section straightforward

4.473 MeV structure unknown

- Needs more work
- Emitted gamma –ray could confuse (v_e ,e-) signal

To be done

- Neutral current signals of different SN temperatures, etc.
- Charged current cross sections (including qdependent form factors) and signatures
- Breakup of nucleus with neutron emission
- Analysis of signals in different detectors, water Cherenkov, etc. to max extraction of SN physics